
About Course
Theoretical Mechanics the complete guide in 2020.
This course focuses on analytical aspects of classical mechanics and is targeted towards the audience who are interested in pursuing research in Physics. Various formulations of mechanics, like the Lagrangian formulation, the Hamiltonian formulation, the Poisson bracket formulation will be taught in the course. The course also introduces the mechanics of continuous systems and fields.
INTENDED AUDIENCE: First year of MSc or 2nd and 3rd year of BE/BTech in Engg Physics
Course Content
Theoretical Mechanics
-
Theoretical Mechanics [Introduction Video]
03:03 -
Lec 01: Introduction, Constraints
44:45 -
Lec 02 : Generalized Coordinates, Configuration Space
59:55 -
Lec 03 : Principle of Virtual Work
00:00 -
Lec 04 : D’Alembert’s Principle
00:00 -
Lec 05 : Lagrange’s Equations
00:00 -
Lec 6: Hamilton’s Principle
00:00 -
Lec 7: Variational Calculus, Lagrange’s Equations
00:00 -
Lec 8: Conservation Laws and Symmetries
00:00 -
Lec 9: Velocity Dependent Potentials, Non-holonomic Constraints
00:00 -
Lec 10: An Example: Hoop on a ramp
00:00 -
Lec 11: Phase Space
00:00 -
Lec 12: Central Force Problem, Constants of Motion
00:00 -
Lec 13: Classification of Orbits
00:00 -
Lec 14: Determining Orbits
00:00 -
Lec 15: Kepler Problem
00:00 -
Lec 16: Runge-Lenz Vector, Virial Theorem
00:00 -
Lec 17: Scattering – I
00:00 -
Lec 18: Scattering -II
00:00 -
Lec 19: Rigid Bodies and Generalised Coordinates
00:00 -
Lec 20: Rotations and Euler Angles
00:00 -
Lec 21: Rotating Frames
00:00 -
Lec 22: Instantaneous Angular Velocity
00:00 -
Lec 23: Moment of Inertia Tensor
00:00 -
Lec 24: Euler Equations
00:00 -
Lec 25: Heavy Symmetric Top
00:00 -
Lec 26: Legendre Transforms
00:00 -
Lec 27: Hamilton’s Equations
00:00 -
Lec 28: Conservation Laws, Routh’s procedure
00:00 -
Lec 29: An Example:Bead on Spinning Ring
00:00 -
Lec 30: Canonical Transformations
00:00 -
Lec 31: Symplectic Condition
00:00 -
Lec 32: Canonical Invariants, Harmonic Oscillator
00:00 -
Lec 33: Poisson Bracket Formulation
00:00 -
Lec 34: Infinitesimal Canonical Transformations
00:00 -
Lec 35: Symmetry Groups of Mechanical Systems
00:00 -
Lec 36: Hamilton Jacobi Theory
00:00 -
Lec 37: Action-Angle Variables
00:00 -
Lec 38: Separation of Variables and Examples
00:00 -
Lec 39: Small Oscillations
00:00 -
Lec 40: Coupled Oscillators
00:00 -
Lec 41: General Formalism
00:00 -
Lec 42: Double Pendulum
00:00
Student Ratings & Reviews
No Review Yet